close
Sunday June 16, 2024

Briton shares Nobel Prize in physics for black hole discovery

By Pa
October 07, 2020

STOCKHOLM: A British scientist has been awarded the 2020 Nobel Prize in physics for his work on showing the general theory of relativity leads to the formation of black holes.

Sir Roger Penrose shares the prize with Reinhard Genzel and Andrea Ghez, who discovered that an invisible and extremely heavy object governs the orbits of stars at the centre of our galaxy. A supermassive black hole is the only currently known explanation.

The Royal Swedish Academy of Sciences made the announcement on Tuesday, setting out that Sir Roger would take home half of the 10 million Swedish kronor (£864,000) prize, with the other two winners splitting the other half.

Sir Roger, who was born in Colchester in 1931, used “ingenious mathematical methods” in his proof that black holes are a direct consequence of Albert Einstein’s general theory of relativity, the committee said. It added that Einstein did not himself believe that black holes — super-heavyweight monsters that capture everything that enters them — really exist. In January 1965, 10 years after Einstein’s death, Sir Roger, Emeritus Professor at the Mathematical Institute of the University of Oxford, proved that black holes really can form and described them in detail — at their heart, black holes hide a singularity in which all the known laws of nature cease.

The panel said: “His groundbreaking article is still regarded as the most important contribution to the general theory of relativity since Einstein.”

Professors Genzel and Ghez, born in Germany and America respectively, each lead a group of astronomers that, since the early 1990s, has focused on a region called Sagittarius A* at the centre of our galaxy.

According to the committee, their pioneering work has given us the most convincing evidence yet of a supermassive black hole at the centre of the Milky Way. David Haviland, chair of the Nobel committee for physics, said: “The discoveries of this year’s Laureates have broken new ground in the study of compact and supermassive objects.

“But these exotic objects still pose many questions that beg for answers and motivate future research. “Not only questions about their inner structure, but also questions about how to test our theory of gravity under the extreme conditions in the immediate vicinity of a black hole.”